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Introduction 

•  Previous challenges in graph exploitation, machine learning, High Performance 
Computing and visual analytics include 
–  DIMACS (10th), YOHO, MNIST, HPC Challenge, ImageNet, VAST  

•  Graph Challenge encourages community approaches, such as DARPA HIVE, to 
develop new solutions for analyzing graphs derived from social media, sensor feeds, 
and scientific data to enable relationships between events to be discovered as they 
unfold in the field 

•  Graph Challenge organizers will provide specifications, data sets, data generators, and 
serial implementations in various languages 

•  Graph Challenge participants are encouraged to apply innovative hardware, software, 
and algorithm techniques to push the envelop of power efficiency, computational 
efficiency, and scale 

•  Submissions will be in the form of full conference write ups to IEEE HPEC which will 
allow participants to be evaluated on their complete solution 
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Graph Challenge 

•  Graph Challenge seeks input from diverse communities to develop graph 
challenges that take the best of what has been learned from groundbreaking 
efforts such as GraphAnalysis, Graph500, FireHose, MiniTri, and GraphBLAS to 
create a new set of challenges to move the community forward  

•  Initial Graph Challenges 

–  Static Graph Challenge: Sub-Graph Isomorphism  
This challenge seeks to identify a given sub-graph in a larger graph 

–  Streaming Graph Challenge: Stochastic Block Partition  
This challenge seeks to identify optimal blocks (or clusters) within a graph 
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Static versus Streaming Mode 

•  Static graph processing 
–  Given a large graph G 

–  Evaluate ƒ(G) 

•  Two classes of streaming: stateless and stateful 
–  Stateless: process data g as it goes by ƒ(g) 

–  Stateful: add data g to a larger corpus G and then process corpus ƒ(G + g) 

•  Graph processing is often in the stateful category 
–  Easy to simulate by partitioning G into streaming pieces g 
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Labels and Filtering 

•  Filtering on edge/vertex labels is often used when available to reduce the search space 
–  Filtering can be applied at initialization, during intermediate steps, or at the vertex level 

–  Very problem dependent 

•  Some Graph Challenge data sets have labels and some data sets are unlabeled 
–  Some participants will want to filter on labels 

•  Initial example implementations will work without labels 
–  Labels can be used if they choose 

•  Graph Challenge is judged by a panel 
–  Panel will value the variations that are submitted 
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Publicly Available Datasets 
Initial Datasets in Blue 

•  Social networks (10 data sets up to 4.8M vertices & 69M edges) 
–  Online social networks, edges represent interactions between people 

•  Networks with ground-truth (6 data sets up to 66M vertices & 1.8B edges, 
e.g. Friendster) 
–  Ground-truth network communities in social and information networks 

•  Communication networks (3 data sets up to 2.3M vertices & 5M edges) 
–  Email communication networks with edges representing communication 

•  Citation networks (3 data sets up to 3.7M vertices & 16M edges) 
–  Nodes represent papers, edges represent citations 

•  Collaboration networks (5 data sets up to 23K vertices & 198K edges) 
–  Nodes represent scientists, edges represent collaborations 

•  Web graphs (4 data sets up to 875K vertices & 5.1M edges) 
–  Nodes represent webpages and edges are hyperlinks 

•  Amazon networks (5 data sets up to 548K vertices & 3.4M edges) 
–  Nodes represent products and edges link commonly co-purchased 

products 

•  Internet networks (9 data sets up to 62K vertices & 147K edges) 
–  Nodes represent computers and edges communication 

•  Road networks (3 data sets up to 1.9M vertices & 2.8M edges) 
–  Nodes represent intersections and edges roads connecting the 

intersections 

•  Autonomous systems (5 data sets up to 26K vertices & 106K edges) 
–  Graphs of the internet 

•  Signed networks (10 data sets up to 4.8M vertices & 69M edges) 
–  Networks with positive and negative edges (friend/foe, trust/distrust) 

•  Location-based online social networks (2 data sets up to 198K vertices 
& 950K edges) 
–  Social networks with geographic check-ins 

•  Wikipedia networks, articles, and metadata (7 data sets up to 3.5M 
vertices & 250M edges) 
–  Talk, editing, voting, and article data from Wikipedia 

•  Twitter and Memetracker (4 data sets up to 96M vertices & 476M edges) 
–  Memetracker phrases, links and Tweets 

•  Online communities (3 data sets up to 2.3M images) 
–  Data from online communities such as Reddit and Flickr 

•  Online reviews (6 data sets up to 34M product reviews) 
–  Data from online review systems such as BeerAdvocate and Amazon 

Stanford Large Network Dataset Collection snap.stanford.edu/data 
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Publicly Available Datasets 
Initial Datasets in Blue 

 
•  Astronomy (1 data set 180 GB) 

–  Sloan Digital Sky Survey SQL MDF files 
•  Biology (4 data sets up to 200 TB) 

–  Genome sequence data 
•  Climate (3 data sets size growing daily) 

–  Satellite imagery data 
•  Economics (10 data sets up to 220 GB) 

–  Census, transaction, and transportation data 
•  Encyclopedic (10 data sets up to 541 TB - Common Crawl Corpus) 

–  Various online encyclopedia data 
•  Geographic (3 data sets up to 125 GB)   

–  Street maps 
•  Mathematics (1 data sets 160 GB) 

–  University of Florida Sparse Matrix Collection 

•  Advertising and Market Data (4 data sets up to 3.7 GB) 
–  Yahoo!'s auction-based platform for selling advertising space 

•  Competition Data (3 data sets up to 1.5 GB) 

–  Data challenges run by Yahoo 
•  Computing Systems Data (5 data sets up to 8.8 GB) 

–  Computer systems log data 
•  Graph and Social Data (3 data sets up to 5 GB) 

–  Graph data from search, groups, and webpages 

•  Image Data (3 data sets up to 14 GB)   
–  Flickr imagery and metadata 

•  Language Data (29 data sets up to 166 GB - Answers browsing behavior) 

–  Wide range of question/answer data sets 
•  Ratings and Classification Data (10 data sets up to 83 GB — 1.5 TB 

dataset withdrawn) 
–  Community preferences and data 

•  Used to generate world’s largest power law graphs 
•  Can be modeled with Kronecker Product of a Recursive 

MATrix (R-MAT): G⊗k = G⊗k–1 ⊗ G 
–  Where “⊗”denotes the Kronecker product of two matrices 

•  R-MAT: A Recursive Model for Graph Mining, Chakrabarti, Zhan & Faloutsos (2004) 
•  Mathematically Tractable Graph Generation and Evolution, Leskovec, Chakrabarti, Kleinberg & Faloutsos, (2005) 

AWS Public Data Sets aws.amazon.com/public-data-sets 

Graph500.org Data Generator 

Yahoo! Webscope Datasets  webscope.sandbox.yahoo.com 

Tools to generate (at various scales and parameters) 
data sets will be provided as part of the challenge 
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Graph Challenge Data Formats 

•  Public data is available in a variety of formats 
–  Linked list, tab separated, labeled/unlabeled 

•  Requires parsing and standardization  
•  Proposed formats  

–  Tab separated triples in ASCII file with labels removed 
–  MMIO ASCII format: math.nist.gov/MatrixMarket 

The Matrix Market Exchange Formats: Initial Design, Boisvert, Pozo & Remington (1996) 

Amazon cloud services will be used to host particularly large data sets 

Wikipedia Voting Wikipedia Adminship Road Network Twitter Data 
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Data Set and Truth Generation  
for Graph Partitioning Challenge  

•  Generate simulated graphs with truth on the block structure (i.e. graph partition) 
–  Realism captured by statistical models: 
         Degree corrected blockmodel, power law degree distribution,   
         Dirichlet-multinomial block assignment 

–  Vary parameters to capture diversity and levels of difficulty 
Block overlap, block size, node degree, graph size, density, and more 

•  Real world graphs (SNAP library) 
–  However most real world graphs do not have truth  

•  Embed generated graphs into real world graphs 
–  Partition correctness is evaluated on the generated part with truth  

Block 
overlap 

Block size 
heterogeneity 

Node 
degrees 

Graph 
density 
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Streaming Graph Generation and Processing 

•  In real-world applications, graph data often arrives in streaming fashion 
•  Streaming graph data sets are generated in two ways: 

–  Emerging edge samples: edges become available and are observed over stages 
–  Snowball sampling: the graph is explored through snowball sampling from entry node(s)   

•  Partition is done at each stage of the streaming graph 
–  Algorithm moves onto the next stage when it has partitioned the previous stage 
–  Algorithm that leverages partition(s) from the previous stage(s) is encouraged 
–  Performance metrics should be reported at each stage 

Streaming with Emerging Edge Samples Streaming with Snowball Sampling 
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The Graph Partitioning Problem 

Problem:  Discover community structure in graph topology and interaction data  
Application:  Identify significant activities within large graphs 

Sub-network activity blocks Social Media Network 

Graph 
Partitioning 
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Blockmodel Graph Partitioning 

•  Blockmodels capture the community structure of graphs: 
–  Block membership for each node 

–  Block matrix describes interaction between blocks 

–  Typically, nodes in the same block interact more than those between different blocks 

•  Rigorous statistical inference on blockmodels is a principled way to partition graphs 
–  Inferred block membership on each node  

provides the partition 

–  Model selection determines the optimal  
number of blocks (i.e. partition resolution)  

–  Bayesian methods capture uncertainty  
of the partition 

–  Produces better partition than spectral and  
modularity maximization methods  N
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Blockmodel Partitioning Baseline Algorithm 

Baseline graph 
partition algorithm 

•  Based on degree corrected stochastic blockmodel (Karrer and Newman 2010) 
–  Realistic model obtained by varying degrees across vertices 
–  Likelihood a function of edge counts between blocks (simple, parallel) 

•  Returns partition with shortest graph description length (Peixoto 2012, 2013)  

•  Markov chain Monte Carlo (MCMC) inference approach amenable to 
parallelism 

•  Challenging computational complexity for large graphs 

•  Participants may enter with a different partition algorithm 
–  All entries should report performance using the  

Challenge metrics and data sets 
–  The true number of blocks is NOT given to the algorithm 

Truth graph (reference) 

Input graph Partitioned graph 
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Degree Corrected Blockmodel 

•  Realistic degree distribution accounts for features like “six degrees of Kevin Bacon”  
(aka small world) and power-law scaling 

•  Realistic community structure captured by stochastic blockmodel 

•  A combination of two well-known random graph models 

Node degrees  Stochastic blockmodel 

•  Stochastic blockmodels and community structure in networks, Karrer and Newman (2011) 
•  A random graph model for power law graphs, Aiello, Chung, and Lu (2001) 
•  Estimation and prediction for stochastic blockmodels …, Snijders and Nowicki (1997) 

Network model with Poisson Interactions: 

Edge interaction from i to j ~ Poisson(λij) 
Rate λij =  didj  ×  block interaction rate(bi, bj) 

Block membership 
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Markov Chain Monte Carlo (MCMC) 

•  Inference on realistic models often results in complex distributions with no  
closed-form representation  
–  This presents a challenge because such distributions represent the quantity of interest 

•  Markov Chain Monte Carlo (MCMC) samples the target distribution  
–  New samples are proposed from the previous samples 

–  Upon convergence, the samples represent exactly the target distribution 

•  MCMC on complex multivariate distributions is performed by  
updating one variable at a time (i.e. Gibbs sampling) 

MCMC sample path using the 
Metropolis-Hasting algorithm 
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Parallel MCMC for Blockmodel Graph Partitioning 

•  The distribution on the graph partition does not have a closed form and has high 
dimension (#vertices) 

–  MCMC sampling is ideal for computing this distribution 

–  Efficient partition updates in parallel, one node at a time 

•  Updating each node can be massively parallelized 
–  Sequential update gives exact graph partition distribution 

–  Parallel update gives a reasonable approximation and produces comparable result  
in our evaluation over simulated and real graphs  

# edges between block i and j 
according to partition b on graph G 

# edges in block i and j 

p(b|G) /
X

ij

Mij log

⇣ Mij

didj

⌘
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Massive parallelization necessary for large graphs 

Processing Time vs Graph Size 
Friendster Network Subgraphs 

Empirical results consistent with 
algorithm’s theoretical complexity |E| = 3582 

|E| = 141237 

10M edges 

1 day 

•  Desktop x86_64 
•  16 cores 
•  32 GB 

×6 speedup 

1 trillion 
edges in 
~60 years 

Runtime evaluation using the graph-tool 
Python package implementation 
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Parallel MCMC Partitioning Closely Approximates 
“Exact” Sequential MCMC 

•  Partitions on a range of graphs sizes show differences within the random variability of 
the partitioning algorithm itself 

•  Quantitative metrics used for comparing partitions (correctness metrics) 

•  Recent theoretical development in parallel MCMC suggests good performance under 
sparse correlation (De Sa 2016) 
–  Nodal block assignments correlate sparsely since graphs are typically sparse 

Sequential, O(103) vertices Parallel, O(103) vertices Sequential, O(104) vertices Parallel, O(104) vertices 
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Baseline Algorithmic Description Documents for Performers 
Vertex-Based Parallelism Array-Based (Batch) Parallelism 
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Graph Partition Performance Metrics 

•  Correctness metrics 
–  Objective comparison between performer results with common datasets 

–  Diagnostic performance tools for performer development 
–  Baseline recommendation: Pairwise Precision-Recall 

•  Computational metrics 
–  Total number of edges in graph partitioned 
–  Execution time 

–  Rate (edges/second) 
–  Energy (Watts) 

–  Rate per energy (edges/second/Watt) 
–  Memory and processor requirement (amount and type used) 

•  For streaming graphs, evaluation should be done at each stage using these metrics 
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Graph Partition Correctness Metrics 

•  Accuracy = Correct/Total = 50/56 = 89% 
–  Good: Intuitive / Bad: Ignores distribution of errors 

•  Precision-Recall (per block) 
–  Precision(A) = Correct(A)/[Correct(A)+False(A)] = 30/31  [column] 

–  Recall(A) = Correct(A)/[Correct(A)+Missed(A)]  = 30/32  [row] 

–  Good: Intuitive, per block diagnostics / Bad: No global summary 

•  Pairwise Precision-Recall 
•  Information theoretic P-R 

•  Comparing partitions, Hubert (1985) 
•  Comparing clusterings—an information based distance, Meilă (2005) 

Output A Output B Output C 

Truth A 30 2 0 
Truth B 1 20 3 

Contingency 
Table 

A: 32 
nodes 

B: 24 
nodes 

Truth 
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Graph Partition Correctness Metrics (cont.) 

•  Accuracy 
•  Precision-Recall (per block) 

•  Pairwise Precision-Recall 
–  Four possible outcomes for every pair of nodes 

Same/Same, Different/Different, Same/Different, Different/Same 

–  Precision = SS/(SS+DS) ; Recall = SS/(SS+SD)  [for all pairs] 
P = 90% ; R = 81% for example 

–  Good: ROC-like summary statistic / Bad: Pairwise counting is ad hoc 

•  Information theoretic P-R 

Baseline recommendation 

Output A Output B Output C 

Truth A 30 2 0 
Truth B 1 20 3 

Contingency 
Table 

A: 32 
nodes 

B: 24 
nodes 

Truth 

•  Comparing partitions, Hubert (1985) 
•  Comparing clusterings—an information based distance, Meilă (2005) 
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Graph Partition Correctness Metrics (cont.) 

•  Accuracy 
•  Precision-Recall (per block) 
•  Pairwise Precision-Recall 

•  Information theoretic P-R 
–  Precision = I(T;O)/H(O) ;  Recall = I(T;O)/H(T) 

P = 57% ; R = 71% for example 

–  Good: ROC-like summary statistics, captures error distribution, rigorous interpretation 

–  Bad: Entropy-space interpretation is non-intuitive 

Output A Output B Output C 

Truth A 30 2 0 
Truth B 1 20 3 

Contingency 
Table 

A: 32 
nodes 

B: 24 
nodes 

Truth 

Correct 
Info False 

Info 
 Missed 

Info 

H(T|O) H(O|T) 

H(T) H(O) 

I(T;O) 

•  Comparing partitions, Hubert (1985) 
•  Comparing clusterings—an information based distance, Meilă (2005) 
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Summary 

•  Graph partitioning challenge on simulated graphs and embedded real-world graphs 
–  Partitioning algorithm uses realistic stochastic blockmodel and statistically rigorous inference 

–  Streaming versions defined 

–  Correctness and computational performance metrics defined 

•  Performer implementations will compute the block partition on provided data sets and 
report the given metrics 

•  A submission to the IEEE HPEC Graph Challenge consists of a conference style paper 
describing the approach, implementation, innovations, and results 

•  Both hardware and software should be described in solution 
–  Innovative hardware solutions are of interest (in addition to best algorithm for hardware) 

–  Special interest in performance for large scale data sets (1 billion edges) 


