Stochastic Block Partition Graph Challenge
- draft -

Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, Jeremy Kepner, Sanjeev Mohindra,
Paul Monticciolo, Albert Reuther, Siddharth Samsi, William Song, Diane Staheli, Steven Smith
MIT Lincoln Laboratory, Lexington, MA

Abstract—A challenging and important objective for
analyzing real-world graphs is to achieve scalable per-
formance on large graphs. Competitive benchmarks and
challenges have proven to be an effective means to ad-
vance state-of-the-art performance and foster community
collaboration. Past graph challenges such as Graph500
address problems such as search and path-finding with sub-
quadratic complexity. However, some analyses on graphs
with real-world applications are NP-hard. Graph partition
is a well-known example. Although graph partition, as
a combinatorial problem, is NP-hard, existing relaxation
methods provide good approximate solutions with sub-
quadratic complexity and hence can scale to large graphs.
This paper describes a graph partition challenge with a
baseline partition algorithm that has such desired proper-
ties. Furthermore, the algorithm employs rigorous Bayesian
inferential methods based on a statistical model that cap-
tures characteristics of the real-world graphs. This strong
foundation enables the algorithm to address limitations of
well-known graph partition approaches such as modularity
maximization. This paper describes various aspects of the
challenge including: (1) the data sets and graph generator,
(2) the baseline partition algorithm with pseudocode, (3) an
argument for the correctness of parallelizing the Bayesian
updates, (4) different parallel computation strategies such
as node-based parallelism and matrix-based parallelism,
(5) evaluation metrics for both partition correctness and
computational requirements, (6) preliminary timing of a
Python-based demonstration code and the open source C++
code, and (7) considerations for partitioning the graph in
a streaming fashion. Data sets and source code for the
algorithm as well as metrics, with detailed documentation
are available at GraphChallenge.org.

I. INTRODUCTION

In the era of big data, analysis and algorithms often
need to scale up to large data sets for real-world appli-
cations. With the rise of social media and network data,
algorithms on graphs face the same challenge. Compet-
itive benchmarks and challenges have proven to be an
effective means to advance state-of-the-art performance
and foster community collaboration. Previous bench-
marks such as Graph500 [1] and the Pagerank Pipeline
[2] are examples of such, targeting analysis of large

*This material is based upon work supported by the Defense
Advanced Research Projects Agency under Air Force Contract No.
FA8721-05-C-0002. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Department of Defense.

graphs and focusing on problems with sub-quadratic
complexity, such as search, path-finding, and PageRank
computation. However, some analyses on graphs with
valuable applications are NP-hard. The graph partition
and the graph isomorphism (i.e. matching) problems
are well-known examples. Although these problems are
NP-hard, existing relaxation methods provide good ap-
proximate solutions with sub-quadratic complexity and
hence can scale to large graphs [3], [4], especially
with the aid of high performance computing hardware
platform such as massively paralle]l CPUs and GPUs. To
promote algorithmic and computational advancement in
these two important areas of graph analysis, our team
has implemented a challenge for graph isomorphism [5]
and graph partition at GraphChallenge.org. This paper
describes the graph partition challenge.

Graph partition, also known as community detection
and graph clustering, is an important problem with many
real-world applications. The objective of graph partition
is to discover the distinct community structure of the
graph, specifically the community membership for each
node in the graph. The partition gives much insight to
the interactions and relationships between the nodes and
enables detection of nodes belonging to certain commu-
nities of interest. Much prior work has been done in the
problem space of graph partition, with a comprehensive
survey in [6]. The most well-known algorithm is prob-
ably the spectral method by [7] where partition is done
through the eigenspectrum of the modularity matrix.
Most of the existing partition algorithms work through
the principle of graph modularity where the graph is par-
titioned into communities (i.e. modules) that have much
stronger interactions within them than between them.
Typically, partitioning is done by maximizing the graph
modularity [8]. [9] extends the concept of modularity
for time-dependent, multiscale, and multiplex graphs.
Modularity maximization is an intuitive and convenient
approach, but has inherent challenges such as resolution
limit on the size of the detectable communities [10],
degeneracies in the objective function, and difficulty in
identifying the optimal number of communities [11].

To address these challenges, recent works perform
graph partition through membership estimation based on

http://GraphChallenge.org
http://GraphChallenge.org

generative statistical models. For example, [12], [13],
[14], [15] estimate community memberships using the
degree corrected stochastic blockmodels [16], and [17]
proposes a mixed-memberships estimation procedure
by applying tensor methods to the mixed-membership
stochastic blockmodels [18]. The baseline partition al-
gorithm for this challenge is based on [13], [14], [15],
because of its rigorous statistical foundation and sub-
quadratic computational requirement. Under this ap-
proach, each community is represented as a “block” in
the model. Going forward, this paper will use the term
“block” as the nomenclature for a community or a graph
cluster.

When some nodes in the graph have known mem-
berships a priori, these nodes can serve as ‘“cues” in
the graph partition problem. [19] is an example of such
using random walks on graph. This challenge will focus
on the graph partition problem where such cues are not
available.

This paper describes the graph partition challenge
in detail, beginning with Section II on the data sets
and graph generator. Section III describes the baseline
partition algorithm, including pseudocode on the core
Bayesian updates. Section IV focuses on the parallel
computation of the baseline algorithm, argues for the
correctness of parallelizing the Bayesian updates, then
proposes parallel computation strategies such as node-
based parallelism and matrix-based parallelism. Section
V describe the evaluation metrics for both partition
correctness and computational requirements, including
a preliminary timing of a Python-based demonstration
code and the open source C++ code [20]. Considerations
for partitioning the graph in a streaming fashion are
given throughout the paper.

II. DATA SETS

The data sets for this challenge consist of graphs of
varying sizes and characteristics. Denote a graph G =
(V,), with the set V of N nodes and the set £ of E
edges. The edges, represented by a N x N adjacency
matrix A, can be either directed or undirected, binary
or weighted. Specifically, A;; is the weight of the edge
from node 7 to node j. A undirected graph will have a
symmetric adjacency matrix.

In order to evaluate the partition algorithm imple-
mentation on graphs with a wide range of realistic
characteristics, graphs are generated according to a truth
partition b’ of BT blocks (i.e. clusters), based on the
degree-corrected stochastic blockmodels by Karrer and
Newman in [16]. Under this generative model, each
edge, A;;, is drawn from a Poisson distribution of rate
Ai; governed by the equations below:

Aij ~
>\ij =

Poisson(\;;) (1)
00,0, ?)

where 6; is a correction term that adjusts node i’s ex-
pected degree, 2,5, the strength of interaction between
block b; and b;, and b; the block assignment for node i.
The degree-corrected stochastic blockmodels enable the
generation of graphs with characteristics and variations
consistent with real-world graphs. The degree correction
term for each node can be drawn from a Power-Law
distribution with an exponent between —3 and —2 to
capture the degree distribution of realistic, scale-free
graphs [21]. The block interaction matrix €2 specifies the
strength of within- and between-block (i.e. community)
interactions. Stronger between-block interactions will
increase the block overlap, making the block partition
task more difficult. Lastly, the block assignment for each
node (i.e. the truth partition b') can be drawn from
a multinomial distribution with a Dirichlet prior that
determines the amount of variation in size between the
blocks. Figure 1 shows generated graphs of various char-
acteristics by adjusting the parameters of the generator.
These parameters server as “knobs” that can be dialed to
capture a rich set of characteristics for realism and also
for adjusting the difficulty of the block partition task.

(a) baseline (b) increased block overlap

(c) higher block size variation

Fig. 1. Generated graphs with varying characteristics. Nodes are
colored and shaped according to their true block assignments. Graphs
are typically much larger. Small graphs are shown here for the purpose
of demonstration. For simplicity and clarity, the edge directions (i.e.
arrows) are not displayed.

(d) more high degree nodes

Real-world graphs will also be included in the data
sets. Since the truth partition is not available in most
real-world graphs, generated graphs with truth will be
embedded with the real-world graphs. While the entire
graph will be partitioned, evaluation on the correctness
of the partition will be done only on the generated
part of the hybrid graph. Embedding will be done by
adding edges between nodes in the real-world graph and
the generated graph, with a relatively small probability
proportional to the product of both node degrees.

The block partition graph challenge also aims to
process the input graph in a streaming fashion, where
parts of the input graph become available at different
points in time. Streaming data sets are produced by
simply breaking the entire input graph into pieces and
allowing each piece of the graph to become available
to the partition algorithm at different stages in time.
The baseline partition algorithm for this challenge is a
natural fit for processing streaming graphs, which will
be discussed in Section III.

III. BASELINE ALGORITHM

The baseline graph partition algorithm for this chal-
lenge, chosen for its rigorous statistical foundation and
sub-quadratic, O(E log® E), computational requirement,
is developed by Tiago Peixoto in [13], [14], [15] based
on the degree-corrected stochastic blockmodels by Kar-
rer and Newman in [16]. Given the input graph, the
algorithm partitions the nodes into B blocks (i.e. clusters
or communities), by updating the nodal block assign-
ment represented by vector b of N elements where
b; € {1,2,..., B}, and the inter-block and intra-block
edge count matrix (typically sparse in a large graph) rep-
resented by M of size B x B, where each element M;;
represents the number or the total weight of edges going
from block ¢ to block j. The diagonal elements represent
the edge counts within each block. For conciseness, this
matrix will be referred to as the inter-block edge count
matrix going forward. The goal of the algorithm is to
recover the truth partition b' of B blocks (i.e. clusters).

The algorithm performs a Fibonacci search (i.e. golden
section search) [22] through different numbers of blocks
B and attempts to find the minimum description length
partition. The best overall partition b* with the optimal
number of block B* minimize the total description
length of the model and the observed graph (i.e. entropy
of the fitted model). To avoid being trapped in local
minima, the algorithm starts with each node in its own
block (i.e. B = N) and the blocks are merged at each
step of the Fibonacci search, followed by iterative Monte
Carlo Markov Chain (MCMC) updates on the block
assignment for each node to find the best partition for
the current number of blocks. The block-merge moves
and the nodal updates are both governed by the same

underlying log posterior probability of the partition given
the observed graph:

My,
p(blG) o« Z M1, log <dtttlcz> 3)
1,0U 2,1n

t1,t2

The log posterior probability is a summation over all
pairs of blocks ¢; and ¢ where d¢, o4t is the total out-
degree for block ¢; and d,, in is the total in-degree for
block to. Note that in computing the posterior proba-
bilities on the block assignments, the sufficient statistics
for the entire graph is only the inter-block edge counts,
giving much computational advantage for this algorithm.
Another nice property of the log posterior probability is
that it is also the negative entropy of the fitted model.
Therefore, maximizing the posterior probability of the
partition also minimizes the overall entropy, fitting nicely
into the minimum description length framework. The
block-merge moves and the nodal block assignment
updates are described in detail next, starting with the
nodal updates.

A. Nodal Block Assignment Updates

The nodal updates are performed using the Monte
Carlo Markov Chain (MCMC), specifically with Gibbs
sampling and the Metropolis-Hastings algorithm since
the partition posterior distribution in Equation 3 does
not have a closed-form and is best sampled one node at
a time. At each MCMC iteration, the block assignment
of each node ¢ is updated conditional on the assignments
of the other nodes according to the conditional pos-
terior distribution: p(b;|b_;, G). Specifically, the block
assignment b; for each node ¢ is updated based on the
edges to its neighbors, A;xs, and A,;, the assignments
of its neighbors, by, and the inter-block edge count,
M. For each node ¢, the update begins by proposing
a new block assignment. To increase exploration, a
block is randomly chosen as the proposal with some
predefined probability. Otherwise, the proposal will be
chosen from the block assignments of nodes nearby to
i. The new proposal will be considered for acceptance
according to how much it changes the log posterior
probability. The acceptance probability is adjusted by
the Hastings correction, which accounts for potential
asymmetry in the directions of the proposal to achieve
the important detailed balance condition that ensures
the correct convergence of the MCMC. Algorithm 1
in Appendix A is a detailed description of the block
assignment update at each node, using some additional
notations: d;in = Y. My, is the number of edges into
block ¢, dious = Zk My, the number of edges out of
block t, d; = dy in + dt,0ut the number of edges into and
out of block ¢, K;; the number of edges between nodes
1 and block ¢, and f is the update rate that controls the

balance between exploration and exploitation. The block
assignments are updated for each node iteratively until
convergence when the improvement in the log posterior
probability falls below a threshold.

B. Block-Merge Moves

The block-merge moves work in almost identical
ways as the nodal updates described in Algorithm 1 in
Appendix A, except that it takes place at the block level.
Specifically, a block-merge move proposes to reassign all
the nodes belonging to the current block 7 to a proposed
block s. In other words, it is like applying Algorithm 1
on the block graph where each node represents the entire
block (i.e. all the nodes belonging to that block) and each
edge represents the number of edges between the two
blocks. Another difference is that the block-merges are
done in a greedy manner to maximize the log posterior
probability, instead of through MCMC. Therefore, the
Hastings correction computation step and the proposal
acceptance step are not needed. Instead, the best merge
move over some number of proposals is computed for
each block according to the change in the log posterior
probability, and the top merges are carried out to result
in the number of blocks targeted by the Fibonacci search.

C. Put It All Together

Overall, the algorithms shifts back and forth between
the block-merge moves and the MCMC nodal updates,
to find the optimal number of blocks B* with the
resulting partition b*. Optimality is defined as having
the minimum overall description length, H, of the model
and the observed graph given the model:

2

B M,
H=Eh (E> +Nlog B M,,log <d)

s r,outds,in

“4)
where the function h(x) = (1+z)log(1+x)— x log(z).
The number of blocks may be reduced at a fixed rated
(e.g. 50%) at each block-merge phase until the Fibonacci
3-point bracket is established. At any given stage of the
search for optimal number of blocks, the past partition
with the closest and higher number of blocks is used to
begin the block-merge moves, followed by the MCMC
nodal updates, to find the best partition at the targeted
number of blocks. Figure 2 shows the partition at se-

lected stages of the algorithm on a 500 node graph:
The baseline partition algorithm for this challenge,
with its rigorous statistical foundation, is ideal for pro-
cessing streaming graph data. Good partitions found
on the graph at a previous state are samples on the
posterior distribution of the partition, which can be used
as starting partitions for the graph at the current state
with additional nodes and edges. This has the natural
Bayesian interpretation of the posterior distribution from

(a) 250 blocks (b) 32 blocks

(c) 8 blocks

(d) 4 blocks

Fig. 2. Partitions at selected stages of the algorithm, with the nodes
colored and shaped according to their block assignments. The algo-
rithm begins with too many blocks (i.e. over partition) and performs
block-merges and nodal updates as it searches for the optimal partition.
The Fibonacci search eventually converges to the partition with the
optimal number of blocks, which is shown in (c) with 8 blocks.

a previous state serving as the prior distribution on the
current state, as additional data on the graph arrives.
Lastly, the algorithm description in this section is
for directed graphs. Very minor modifications can be
applied for undirected graphs that have no impact on
the computational requirement. These minor differences
are documented in Peixoto’s papers [13], [14], [15].

IV. PARALLEL COMPUTATION STRATEGIES

Significant speed up of the baseline partition algorithm
is the primary focus of this graph challenge, and is
necessary for computation on large graphs. Since the
same core computation, described in Algorithm 1 in
Appendix A, is repeated for each block and each node,
parallelizing this core computation across the blocks
and nodes provides a way to speed up the computation
potentially by the order of the number of processors
available. This section first discusses the correctness in
parallelizing the MCMC updates. It then examines some
of the parallel computation schemes for the baseline
algorithm, with their respective advantages and require-
ments.

A. Correctness of Parallel MCMC Updates

The block-merge moves are readily parallelizable,
since each of the potential merge move is evaluated

based on the previous partition and the best merges
are carried out. However, the nodal block assignment
updates are not so straight forward, since it relies on
MCMC through Gibbs sampling which is by nature a
sequential algorithm where each node is updated one
at a time. Parallelizing MCMC updates is an area of
rising interest, with the increasing demand to perform
Bayesian inference on large data sets. Running the
baseline partition algorithm on large graphs is a perfect
example of this need. Very recently, researchers have
proposed to use asynchronous Gibbs sampling as a way
to parallelize MCMC updates [23], [24]. In asynchronous
Gibbs sampling, the parameters are updated in paral-
lel and asynchronous fashion without any dependency
constraint. In [24], a proof is given to show that when
the parameters in the MCMC sparsely influence one
another (i.e. the Dobrushin’s condition), asynchronous
Gibbs is able to converge quickly to the correct distribu-
tion. It is difficult to show analytically that the MCMC
nodal updates here satisfy the Dobrushin’s condition.
However, since the graph is typically quite sparse, the
block assignment on each node influences one another
sparsely. This gives intuition on the adequacy of parallel
MCMC updates for the baseline partition algorithm. In
fact, parallel MCMC updates based on one-iteration-old
block assignments have shown to result in equally good
partitions compared to the sequential updates for all of
the preliminary tests conducted so far.

B. Parallel Updates on Nodes and Blocks

An intuitive and straight-forward parallel computation
scheme is to evaluate each block-merge and update each
nodal block assignment (i.e. Algorithm I in Appendix A)
in a distributed fashion across multiple processors. The
block-merge evaluation is readily parallelizable since
the computation is based on the previous partition. The
MCMC nodal updates can be parallelized using the
one-iteration-old block assignments, essentially approx-
imating the true conditional posterior distribution with:
p(b;i|b—;, G). The conditional block assignments, b_,,
may be more “fresh” if asynchronous Gibbs sampling
is used so that some newly updated assignments may
become available to be used for updates on later nodes.
In any case, once all the nodes have been updated
in the current iteration, all the new block assignments
are gathered and their modifications on the inter-block
edge count matrix aggregated (this can also be done
in parallel). These new block assignments and the new
inter-block edge count matrix are then available for the
next iteration of MCMC updates.

C. Batch Updates Using Matrix Operations

Given an efficient parallelized implementation of
large-scale matrix operations, one may consider carrying

out Algorithm 1 as much as possible with batch compu-
tation using matrix operations [25]. Such matrix opera-
tions in practice perform parallel computation across all
nodes simultaneously.

Under this computation paradigm, the block assign-
ments are represented as a sparse [N X B binary matrix
I', where each row ;. is an indicator vector with a
value of one at the block it is assigned to and zeros
everywhere else. This representation results in simple
matrix products for the inter-block edge counts:

M =T7AT (5)

The contributions of node 7 of block assignment 7 to the
inter-block edge count matrix row r and column r are:

AMrow,i- = Azr (6)
AM! . = AT (N

col,i.

These contributions are needed for computing the ac-
ceptance probabilities of the nodal block assignment
proposals, which makes up a large part of the overall
computation requirement.

Algorithm 2 in Appendix B is a batch implementation
of the nodal updates described in Algorithm 1. The inter-
block edge counts under each of the N proposal are
represented using a 3D matrix M of size N x B x B.
For clarity, computations of the acceptance probabilities
involving the inter-block edge counts and degrees are
specified using tensor notation. Note that much of these
computations may be avoided with clever implementa-
tions. For example:

« If the proposed block assignment for a node is
the same as its previous assignment, its acceptance
probability does not need to be computed.

« New proposals only change two rows and columns
of the inter-block edge count matrix, corresponding
to moving the counts from the old block to the
new block, so most of the entries in M are simply
copies of M ~.

« The inter-block edge count matrix should be sparse,
especially when there is a large number of commu-
nities, since most communities do not interact with
one another. This gives additional opportunity for
speeding up operations on this matrix.

« Similarly, each node is likely to connect with only a
few different communities (i.e. blocks). Therefore,
changes by each nodal proposal on the inter-block
edge count matrix will only involve a few se-
lected rows and columns. Limiting the computation
of change in log posterior, AS, to these rows
and columns may result in significant computation
speedup.

V. METRICS

An essential part of this graph challenge is a canon-
ical set of metrics for comprehensive evaluation of the
partition algorithm implementation by each participating
team. The evaluation should report both the correctness
of the partitions produced, as well as the computational
requirements, efficiency, and complexity of the imple-
mentations. For streaming graphs, evaluation should be
done at each stage of the streaming processing, for
example, the length of time it took for the algorithm
to finish processing the graph after the first two parts of
the graph become available, and the correctness of the
output partition on the available parts so far. Efficient
implementations of the partition algorithm leverage par-
titions from previous stages of the streaming graph to
“jump start” the partition at the current stage.

A. Correctness Metrics

The true partition of the graph is available in this
challenge, since the graph is generated with a stochastic
block structure, as described in Section II. Therefore,
correctness of the output partition by the algorithm im-
plementation can be evaluated against the true partition.
On the hybrid graphs where a generated graph is em-
bedded within a real-world graph with no available true
partition, correctness is only evaluated on the generated
part.

Evaluation of the output partition (i.e. clustering)
against the true partition is well established in existing
literature and a good overview can be found in [26].
Widely-adopted metrics fall under three general cate-
gories: unit counting, pair-wise counting, and informa-
tion theoretic metrics. The challenge in this paper adopts
all of them for comprehensiveness and recommends the
pairwise precision-recall as the primary correctness met-
ric for its holistic evaluation and intuitive interpretation.
Computation of the correctness metrics described in
this section are implemented in Python and shared as
a resource for the participants at GraphChallenge.org.
Table I provides a simple example to demonstrate each
metric, where each cell in row ¢ and column j is the
count of nodes belonging to truth block ¢ and reported
in output block j.

TABLE I
CONTINGENCY TABLE OF TRUE VS. OUTPUT PARTITION

Output A | Output B | Output C | Total
Truth A 30 2 0 32
Truth B 1 20 3 24
Total 31 22 3 56

In this example, the nodes are divided into two blocks
in the true partition, but divided into three blocks in

the output partition. Therefore, this is an example of
over-clustering (i.e. too many blocks). The diagonal
cells shaded in green here represent the nodes that
are correctly partitioned whereas the off-diagonal cells
shaded in pink represent the nodes with some kind of
partition error.

1) Unit Counting Metrics: The most intuitive metric
is perhaps the overall accuracy, specifically the percent-
age of nodes correctly partitioned. This is simply the
fraction of the total count that belong to the diagonal
entries of the contingency table after the truth blocks
and the output blocks have been optimally associated to
maximize the diagonal entries, typically using a linear
assignment algorithm [27]. In this example, the overall
accuracy is simply 50/66 = 89%. While this one single
number provides an intuitive overall score, it does not
account for the types and distribution of errors. For
example, truth block B in Table I has three nodes
incorrectly split into output block C. If instead, these
three nodes were split one-by-one into output block C,D,
and E, a worse case of over-clustering would have taken
place. The overly simplified accuracy cannot make this
differentiation.

A way to capture more details on the types and
distribution of errors is to report block-wise precision-
recall. Block-wise precision is the fraction of cor-
rectly identified nodes for each output block (e.g.
Precision(Output A) = 30/31) and the block-wise recall
is the fraction of correctly identified nodes for each truth
block (e.g. Recall(Truth B) = 20/24). The block-wise
precision-recall present a intuitive score for each of the
truth and output blocks, and can be useful for diagnosing
the block-level behavior of the implementation. How-
ever, it does not provide a global measure on correctness.

2) Pairwise Counting Metrics: Measuring the level
of agreement between the truth and the output partition
by considering every pair of nodes has a long history
within the clustering community [28], [29]. The basic
idea is simple, by considering every pair of nodes which
belongs to one of the following four categories: 1.) in
the same truth block and the same output block, 2.) in
different truth blocks and different output blocks, 3.) in
the same truth block but different output blocks, and
4.) in different truth blocks but the same output block.
Category 1.) and 2.) are the cases of agreements between
the truth and the output partition, whereas categories
3.) and 4.) indicate disagreements. An intuitive overall
score on the level of agreement is the fraction of all
pairs belonging to category 1.) and 2.), known as the
Rand index [28]. [29] proposes the adjusted Rand index
with a correction to account for the expected value of
the index by random chance, to provide a fairer metric
across different data sets. Categories 4.) and 3.) can be
interpreted as type I (i.e. false positives) and type II (i.e.

http://GraphChallenge.org

false negative) errors, if one considers a “positive” case
to be where the pair belongs to the same block. The
pairwise precision-recall metrics [30] can be computed
as:

#Category 1
#Category 1 + #Category 4(8
)

Pairwise-precision =

#Category 1

Pairwise-recall =
alrwise-reca #Category 1 + #Category 3

9

Pairwise-precision considers all the pairs reported as
belonging to the same output block and measures the
fraction of them being correct, whereas pairwise-recall
considers all the pairs belonging to the same truth block
and measures the fraction of them reported as belonging
to the same output block. In the example of Table I,
the pairwise-precision is about 90% and the pairwise-
recall about 81%, which indicates this to be a case
of over-clustering with more Type II errors. Although
pairwise counting is somewhat arbitrary, it does present
holistic and intuitive measures on the overall level of
agreement between the output and the true partition. For
the challenge, the pairwise precision-recall will serve
as the primary metrics for evaluating correctness of the
output partition.

3) Information Theoretic Metrics: In recent years,
holistic and rigorous metrics have been proposed based
on information theory, for evaluating partitions and clus-
terings [26], [31]. Specifically, these metrics are based
on the information content of the partitions measured
in Shannon entropy. Naturally, information theoretic
precision-recall metrics can be computed as:

I(T;0
Information-precision = 1(_{(70)) (10)
I(T;
Information-recall = ;{(’TO)) (11D

where I(T’; O) is the mutual information between truth
partition 7" and the output partition O, and H(O) is the
entropy (i.e. information content) of the output partition.
Using the information theoretic measures, precision is
defined as the fraction of the output partition information
that is true, and recall is defined as the fraction of
the truth partition information captured by the output
partition. In the example of Table I, the information
theoretic precision is about 57% and recall about 71%.
The precision is lower than the recall because of the extra
block in the output partition introducing information
content that does not correspond to the truth. The infor-
mation theoretic precision-recall provide a rigorous and
comprehensive measure of the correctness of the output

partition. However, the information theoretic quantities
may not be as intuitive to some and the metrics tend to
be harsh, as even a small number of errors often lower
the metrics significantly.

B. Computational Metrics

The following metrics should be reported by the
challenge participants to characterize the computational
requirements of their implementations.

« Total number of edges in the graph (£): This measures
the amount of data processed.

« Execution time: The total amount of time taken for the
implementation to complete the partition, in seconds.

o Rate: This metric measures the throughput of the
implementation, in the number of edges processed
over execution time (£/second). Figure 3 shows the
preliminary results on this metric between four differ-
ent implementations of the partition algorithm, when
run on a desktop with 16-core 2.4 GHz Intel Xeon
processors and 128 GB of 1066 MHz DDR3 SDRAM.

The four implementations are: 1.) C++ sequential

implementation, 2.) C++ parallel implementation [20],

3.) Python sequential implementation without sparse

matrices, and 4.) Python sequential implementation

with sparse matrices. Since the algorithm complexity
is super-linear, the rate drops as the size of the graph
increases, with a slope matching the change in rate
according to the analytical complexity of the algorithm,
O(FElog® E).

—o— C++ Seq
10% | =& c++ Par
—&— Python Seq w/o Sparse
=d- Python Seq w/ Sparse
e 1051 ---- Alg. Complexity: O(E log?F)
o
[
L L
T | T
Q1044 ., TTTTTTETTE e
3 i N s
]
o
- ‘—*——x\
1001 *—* —drd %
10® 103> 10* 10%% 10° 103> 10°
Graph Size: |E|
Fig. 3. Processing rate for four different implementations of the

baseline algorithm across graphs of increasing size. Overall, the slope
of the rates follow the complexity of the algorithm, O(E log? E).

The C++ implementation is about an order of mag-
nitude faster than the Python implementation. With
parallel updates, the C++ implementation gains another
order of magnitude in rate when the graph is large
enough. The Python implementation without sparse

matrices suffers in performance on larger graphs due to
the inefficiency of the dense matrix representation. The
Python implementation with sparse matrices attempts
to address this issue, but it runs very slowly due to
the lack of a fast implementation of sparse matrices
in Python. All four implementations are available at
GraphChallenge.org.

o Energy consumption in watts: The total amount of
energy consumption for the computation.

« Rate per energy: This metric captures the throughput
achieved per unit of energy consumed, measured in
E/second/Watt.

o Memory requirement: The amount of memory required
to execute the implementation.

« Processor requirement: The number and type of pro-
cessors used to execute the implementation.

C. Implementation Complexity Metric

« Total lines-of-code count: This measure the complexity
of the implementation. SCLC [32] and CLOC [33]
are open source line counters that can be used for
this metric. The Python demonstration code for this
challenge has a total of 569 lines. The C++ open source
implementation is a part of a bigger package, so it is
difficult to count the lines on just the graph partition.

VI. SUMMARY

This paper gives a detailed description of the graph
partition challenge, its statistical foundation in the
stochastic blockmodels, and comprehensive metrics to
evaluate the correctness, computational requirements,
and complexity of the competing algorithm implemen-
tations. This paper also recommends strategies for mas-
sively parallelizing the computation of the algorithm in
order to achieve scalability for large graphs. Theoretical
arguments for the correctness of the parallelization are
also given. Our hope is that this challenge will provide a
helpful resource to advance state-of-the-art performance
and foster community collaboration in the important and
challenging problem of graph partition on large graphs.
Data sets and source code for the algorithm as well
as metrics, with detailed documentation are available at
GraphChallenge.org.

VII. ACKNOWLEDGMENT

The authors would like thank Trung Tran, Tom Salter,
David Bader, Jon Berry, Paul Burkhardt, Justin Brukardt,
Chris Clarke, Kris Cook, John Feo, Peter Kogge, Chris
Long, Jure Leskovec, Richard Murphy, Steve Pritchard,
Michael Wolfe, Michael Wright, and the entire Graph-
BLAS.org community for their support and helpful sug-
gestions. Also, the authors would like to recognize Ryan
Soklaski, John Griffith, and Philip Tran for their help
on the baseline algorithm implementation, as well as

Benjamin Miller for his feedback on the matrix-based
parallelism.

REFERENCES

[1] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and
James A Ang. Introducing the graph 500. Cray Users Group
(CUG), 2010.

[2] Patrick Dreher, Chansup Byun, Chris Hill, Vijay Gadepally,
Bradley Kuszmaul, and Jeremy Kepner. Pagerank pipeline
benchmark: Proposal for a holistic system benchmark for big-data
platforms. In Parallel and Distributed Processing Symposium
Workshops, 2016 IEEE International, pages 929-937. IEEE,
2016.

[3] Yu Jin and Joseph F Jaja. A high performance implementation
of spectral clustering on cpu-gpu platforms. In 2016 IEEE
International Parallel and Distributed Processing Symposium
Workshops, pages 825-834. IEEE, 2016.

[4] Hiroki Kanezashi and Toyotaro Suzumura. An incremental local-
first community detection method for dynamic graphs. In 2016
IEEE International Conference on Big Data, pages 3318-3325.
IEEE, 2016.

[5] Siddharth Samsi, Vijay Gadepally, Michael Hurley, Michael
Jones, Edward Kao, Sanjeev Mohindra, Paul Monticciolo, Albert
Reuther, Steven Smith, William Song, Diane Staheli, and Jeremy
Kepner. Subgraph isomorphism graph challenge. in prep.

[6] Santo Fortunato. Community detection in graphs. Physics
Reports, 486(3):75-174, 2010.

[7]1 Mark EJ Newman. Finding community structure in net-
works using the eigenvectors of matrices. Physical review E,
74(3):036104, 2006.

[8] Mark EJ Newman. Modularity and community structure in
networks. Proceedings of the national academy of sciences,
103(23):8577-8582, 2006.

[9] Peter J Mucha, Thomas Richardson, Kevin Macon, Mason A

Porter, and Jukka-Pekka Onnela. = Community structure in

time-dependent, multiscale, and multiplex networks. science,

328(5980):876-878, 2010.

Andrea Lancichinetti and Santo Fortunato. Limits of modu-

larity maximization in community detection. Physical Rev. E,

84(6):066122, 2011.

Benjamin H Good, Yves-Alexandre de Montjoye, and Aaron

Clauset. Performance of modularity maximization in practical

contexts. Physical Rev. E, 81(4):046106, 2010.

Karrer-Brian Ball, Brian and Mark E.J. Newman. An efficient

and principled method for detecting communities in networks.

Physical Review E, 84:036103, 2011.

Tiago P Peixoto. Efficient monte carlo and greedy heuristic

for the inference of stochastic block models. Physical Rev. E,

89(1):012804, 2014.

Tiago P Peixoto. Parsimonious module inference in large net-

works. Physical Rev. Letters, 110(14):148701, 2013.

Tiago P Peixoto. Entropy of stochastic blockmodel ensembles.

Physical Rev. E, 85(5):056122, 2012.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and

community structure in networks. Physical Rev. E, 83(1):016107,

2011.

Furong Huang, UN Niranjan, M Hakeem, and Animashree

Anandkumar. Fast detection of overlapping communities via

online tensor methods. arXiv preprint arXiv:1309.0787, 2013.

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and

Eric P Xing. Mixed membership stochastic blockmodels. Journal

of Machine Learning Research, 9(1981-2014):3, 2008.

Steven Thomas Smith, Edward K Kao, Kenneth D Senne, Garrett

Bernstein, and Scott Philips. Bayesian discovery of threat

networks. IEEE Transactions on Signal Processing, 62(20):5324—

5338, 2014.

Tiago P Peixoto. Graph-tool github. https://github.com/count0/

graph-tool, 2014.

Albert-Ldszl6 Barabdsi. Scale-free networks:

beyond. science, 325(5939):412-413, 2009.

[10]

(1]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21] a decade and

http://GraphChallenge.org
http://GraphChallenge.org
https://github.com/count0/graph-tool
https://github.com/count0/graph-tool

[22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]

(33]

William H Press, Saul A Teukolsky, William T Vetterling, and
Brian P Flannery. Numerical recipes in C, volume 2. Cambridge
Univ Press, 1982.

Alexander Terenin, Daniel Simpson, and David Draper. Asyn-
chronous gibbs sampling. arXiv preprint arXiv:1509.08999,
2015.

Christopher De Sa, Kunle Olukotun, and Christopher Ré. Ensur-
ing rapid mixing and low bias for asynchronous gibbs sampling.
arXiv preprint arXiv:1602.07415, 2016.

Jeremy Kepner and John Gilbert. Graph algorithms in the
language of linear algebra. SIAM, 2011.

Marina Meild. Comparing clusteringsan information based dis-
tance. Journal of multivariate analysis, 98(5):873-895, 2007.
Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83-97, 1955.
William M Rand. Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical Association,
66(336):846-850, 1971.

Lawrence Hubert and Phipps Arabie. Comparing partitions.
Journal of classification, 2(1):193-218, 1985.

Arindam Banerjee, Chase Krumpelman, Joydeep Ghosh, Sugato
Basu, and Raymond J Mooney. Model-based overlapping cluster-
ing. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 532—
537. ACM, 2005.

Ryan S Holt, Peter A Mastromarino, Edward K Kao, and
Michael B Hurley. Information theoretic approach for perfor-
mance evaluation of multi-class assignment systems. In SPIE
Defense, Security, and Sensing, pages 76970R-76970R. Interna-
tional Society for Optics and Photonics, 2010.

Brad Appleton. Source code line counter. http://www.bradapp.
com/clearperl/sclc.html.

Al Danial. Count lines of code. https://github.com/AlDanial/cloc,
2017.

http://www.bradapp.com/clearperl/sclc.html
http://www.bradapp.com/clearperl/sclc.html
https://github.com/AlDanial/cloc

APPENDIX A: PARTITION ALGORITHM PSEUDOCODE

Algorithm 1: Block Assignment Update At Each Node ¢

input : b, bX/i: current block labels for node 4 and its neighbors N;
M ~: current B x B inter-block edge count matrix
A,n;,, Ap;i edges between ¢ and all its neighbors

output: b : the new block assignment for node i

// propose a block assignment

obtain the current block assignment r = b,

draw a random edge of ¢ which connects with a neighbor j, obtain its block assignment u = b’
draw a uniform random variable z; ~ Uniform(0, 1)

if 21 < ;=2 then

// with some probability, propose randomly for exploration
propose b = s by drawing s randomly from {1,2, ..., B}

else
// otherwise, propose by multinomial draw from neighboring blocks to u
M, +M.,)

u

propose b} = s from MultinomialDraw(

end
// accept or reject the proposals
if s = r then
‘ return b;‘ =0b; // proposal is the same as the old assignment. done!
else
compute M T under proposal (update only rows and cols r and s, on entries for blocks connected to 7)

compute proposal probabilities for the Hastings correction:
M +M;+1 . M +ME+1
Pr—s = Zte{b;\fi} [Klt td;+Bt] and Ps—r = Zte{b/’\/’i} [Klt td;r_,'_Bt]
compute change in log [posterior (t1 and to only need to cover rows and cols 7 and s):
1+

M M,

_ + t1t — t1to

AS =34 1 | M, log <d+ o) + M, log <d_ 2)]
tq,0ut ¢y ,in t1,0ut %ty in

compute probability of acceptance:
Daccept = Min [e:><p(—,6’AS)i’;i—::7 1]

draw a uniform random variable z3 ~ Uniform(0, 1)
if T3 < Paccept then

‘ return b;‘ =35 // accept the proposal
else

‘ return b;‘ =r // reject the proposal
end

end

APPENDIX B: MATRIX-BASED BATCH UPDATE PSEUDOCODE

Algorithm 2: Batch Assignment Update for All Nodes

input : I'": current block assignment matrix for all nodes
M ~: current B x B inter-block edge count matrix
A: graph adjacency matrix

output: I'": new block assignments for all nodes

// propose new block assignments
compute node degrees: k = (A + AT)1
compute block degrees: d_ ., = M~1;d;, =M~ "1:d = do, +di,
compute probability for drawing each nelghbor. PNbr = RowDivide(A + AT k)
draw neighbors (IVy,, is a binary selection matrix): N}, = MultinomialDraw(P,.,)
compute probability of uniform random proposal: punifProp = ﬁ
compute probability of block transition: PgjxTran = RowDivide(M~ + M _T, d)
compute probability of block transition proposal: Pgixprop = Ny I'™ PikTran
propose new assignments uniformly: I'yy; = UniformDraw(B, N)
propose new assignments from neighborhood: I'np, = MultinomialDraw (Pgixprop)
draw N Uniform(0, 1) random variables x
compute which proposal to use for each node: Iynitfprop = T < PUnifProp
select block assignment proposal for each node:

I'" = RowMultiply (T'ynit, I UnifProp) + RowMultiply (T'nbr, (1 — Tunitrop))
// accept or reject the proposals

compute change in edge counts by row and col: AM . = AT~ ; AM} = ATT~
update edge count matrix for each proposal: (resulting matrix is N x P x P):
ijk = F A]\41‘ow ik +FPAM:(_)W ik F AMj:;Jl ,4] FPAM?:;)I ,4]

update block degrees for each proposal (resultlng matrlx is N x P):
D;_ut 87 7outj Fz] Zk AM:Z)W ik + FP Zk AM:E)W Jik

11’17_] _dmj F ZkAMcolzk+F Zk:AMcolzk
compute the froposal probablhtles for Hastmgs correction (N x 1 vectors):

(Pl ™) o (TPM~ + TPM~" + 1) o RepMat(-1 - N)] 1
D +D++B

Poari = [(PxneT ™) 0 (T ML+ T M + 1) 1
compute change in log posterior (only need to operate on the impacted rows and columns corresponding to T,
s, and the neighboring blocks to 7):

ME, Mz,
ASi:ij —M”klOg W +Mk10g W

Pros = B

out,ij in,ik out,j

compute probabilities of accepting the proposal (I x 1 vector):

DAccept = N [exp(fﬂAS) O Pssp © ﬁ, 1
draw N Uniform(0, 1) random variable @ accept
compute which proposals to accept: Taccept = TAccept < PAccept

return T'" = RowMultiply(T'F, I'ccept) + RowMultiply (T, (1 — Taccept))

APPENDIX C: LIST OF NOTATIONS

Below is a list of notations used in this document:

N: Number of nodes in the graph

B: Number of blocks in the partition

A: Adjacency matrix of size N x N, where A;; is the
edge weight from node ¢ to j

k: Node degree vector of NV elements, where k; is the
total (i.e. both in and out) degree of node ¢

K: Node degree matrix of N x B elements, where k;;
is the total number of edges between node 7 and
block ¢

N;: Neighborhood of node 4, which is a set containing
all the neighbors of ¢
~: Superscript that denotes any variable from the previ-
ous MCMC iteration
: Superscript that denotes any updated variable in the
current MCMC iteration
b: Block assignment vector of N elements where b; is
the block assignment for node ¢

+

I': Block assignment matrix of N x B elements where
each row I';. is a binary indicator vector with 1
only at the block node i is assigned to. I'" is the
proposed block assignment matrix.

M Inter-block edge count matrix of size B x B, where
M;; is the number of edges from block ¢ to j
MT: Updated inter-block edge count matrix for each

proposal, of size N x B x B

AM I)W Jeol* Row and column updates to the inter-block
edge count matrix, for each proposal. This matrix
is of size N x B.

In-degree vector of B elements, where diy, ; is the
number of edges into block ¢

din:

dyyi: Out-degree count vector of B elements, where
dout,i 18 the number of edges out of block ¢

d: Total edge count vector of B elements, where d; is
the total number of edges into and out of block 1.
d= din + dout

;; Jout* In and out edge count matrix for each block,

on each proposal. It is of size N x B

AS: The difference in log posterior between the previ-
ous block assignment and the new proposed assign-
ment

(B: Learning rate of the MCMC

Pr—s: Probability of proposing block s on the node to
be updated which currently is in block 7

Daccept: Probability of accepting the proposed block on
the node

Py Matrix of N x N elements where each element
Phyyr4;5 is the probability of selecting node j when

updating node @
Ny, Matrix of N x N elements where each row Ny, ;.

is a binary indicator vector with 1 only at j,
indicating that j is selected when updating ¢

PunifProp: Vector of IV elements representing the proba-
bility of uniform proposal when updating each node

PgixTran: Matrix of B x B elements where each element
PpixTran,; 18 the probability of landing in block j
when randomly traversing an edge from block ¢

Pgixprop: Matrix of N x B elements where each el-
ement Pgiprop,i; 1S the probability of proposing
block assignment j for node ¢

T'ynie: Block assignment matrix from uniform proposal
across all blocks. It has N x B elements where each
row I'ypir 4. 1s a binary indicator vector with 1 only
at the block node i is assigned to

I'npr: Block assignment matrix from neighborhood pro-
posal. It has N x B elements where each row
T'unit,s 1s a binary indicator vector with 1 only at
the block node : is assigned to

Iynitprop: Binary vector of N elements with 1 at each
node taking the uniform proposal and O at each node
taking the neighborhood proposal

T pccept: Binary vector of NV elements with 1 at each
node where the proposal is accepted and 0 where
the proposal is rejected

Uniform(x,y): Uniform distribution with range from z
toy

04 Dirac delta function which equals 1 if ¢ = k and 0
otherwise.

RowDivide(A, b): Matrix operator that divides each
row of matrix A by the corresponding element in
vector b

RowMultiply(A, b): Matrix operator that multiplies
each row of matrix A by the corresponding element
in vector b

UniformDraw (B, N): Uniformly choose an element
from {1,2, ..., B} as the block assignment N times
for each node, and return a N x B matrix where
each row ¢ is a binary indicator vector with 1 only
at 7, indicating node i is assigned block j

MutinomialDraw (Pgikprop): For each row of the pro-
posal probability matrix Pgiprop,i., draw an block
according to the multinomial probability vector
Ppixprop,i- and return a N x B matrix where each
row ¢ is a binary indicator vector with 1 only at 7,
indicating node ¢ is assigned block j

